Rational Kernels: Theory and Algorithms

نویسندگان

  • Corinna Cortes
  • Patrick Haffner
  • Mehryar Mohri
چکیده

Many classification algorithms were originally designed for fixed-size vectors. Recent applications in text and speech processing and computational biology require however the analysis of variable-length sequences and more generally weighted automata. An approach widely used in statistical learning techniques such as Support Vector Machines (SVMs) is that of kernel methods, due to their computational efficiency in high-dimensional feature spaces. We introduce a general family of kernels based on weighted transducers or rational relations, rational kernels, that extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. We show that rational kernels can be computed efficiently using a general algorithm of composition of weighted transducers and a general single-source shortest-distance algorithm. Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify the Mercer condition, a condition that guarantees the convergence of training for discriminant classification algorithms such as SVMs. We present several theoretical results related to PDS rational kernels. We show that under some general conditions these kernels are closed under sum, product, or Kleene-closure and give a general method for constructing a PDS rational kernel from an arbitrary transducer defined on some non-idempotent semirings. We give the proof of several characterization results that can be used to guide the design of PDS rational kernels. We also show that some commonly used string kernels or similarity measures such as the edit-distance, the convolution kernels of Haussler, and some string kernels used in the context of computational biology are specific instances of rational kernels. Our results include the proof that the edit-distance over a non-trivial alphabet is not negative definite, which, to the best of our knowledge, was never stated or proved before. Rational kernels can be combined with SVMs to form efficient and powerful techniques for a variety of classification tasks in text and speech processing, or computational biology. We describe examples of general families of PDS rational kernels that are useful in many of these applications and report the result of our experiments illustrating the use of rational kernels in several difficult large-vocabulary spoken-dialog classification tasks based on c ©2004 Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Cortes, Haffner, and Mohri deployed spoken-dialog systems. Our results show that rational kernels are easy to design and implement and lead to substantial improvements of the classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dual Coordinate Descent Algorithm for SVMs Combined with Rational Kernels

This paper presents a novel application of automata algorithms to machine learning. It introduces the first optimization solution for support vector machines used with sequence kernels that is purely based on weighted automata and transducer algorithms, without requiring any specific solver. The algorithms presented apply to a family of kernels covering all those commonly used in text and speec...

متن کامل

Positive Definite Rational Kernels

Kernel methods are widely used in statistical learning techniques. We recently introduced a general kernel framework based on weighted transducers or rational relations, rational kernels, to extend kernel methods to the analysis of variable-length sequences or more generally weighted automata. These kernels are efficient to compute and have been successfully used in applications such as spoken-...

متن کامل

A Machine Learning Framework for Spoken-dialog Classification

One of the key tasks in the design of large-scale dialog systems is classification. This consists of assigning, out of a finite set, a specific category to each spoken utterance, based on the output of a speech recognizer. Classification in general is a standard machine learning problem, but the objects to classify in this particular case are word lattices, or weighted automata, and not the fix...

متن کامل

Weighted automata kernels - general framework and algorithms

Kernel methods have found in recent years wide use in statistical learning techniques due to their good performance and their computational efficiency in high-dimensional feature space. However, text or speech data cannot always be represented by the fixed-length vectors that the traditional kernels handle. We recently introduced a general kernel framework based on weighted transducers, rationa...

متن کامل

Improving the Performance of Text Categorization using N-gram Kernels

Kernel Methods are known for their robustness in handling large feature space and are widely used as an alternative to external feature extraction based methods in tasks such as classification and regression. This work follows the approach of using different string kernels such as n-gram kernels and gappy-n-gram kernels on text classification. It studies how kernel concatenation and feature com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2004